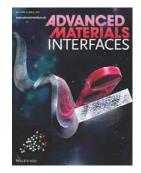

Development of low frictional coating materials using ionic liquids

Name	Hiroyuki Arafune		E-mail	harafune@tsuruoka-nct.ac.jp	=	
Status	Associ	Associate professor				
Affiliations		The Japan Society of Analytical Chemistry, The Chemical Society of Japan, The Society of Polymer Science, Japanese Society of Tribologists				
Keywords		Polymer materials, ionic liquids, Porous materials, tribology, analytical chemistry				
Technical Support Skills		 Surface modification, surface analysis Friction/ Wear test 				


Research Contents Development of low frictional coating materials using ionic liquids

Our research topic is to develop low frictional coating materials using ionic liquids. Ionic liquids (ILs) are molten salts whose melting point is lower than 100 °C. Most popular salts, NaCl, used as table salts in our life do not melt until 801°C owing to strong interaction between composing Na⁺ and Cl⁻. In contrast, ionic liquids can act as liquids even under room temperature by designing structure and combination of composing ions.

ILs possess high thermal stability, negligible volatility and non-flammability. Some part of ILs can keep their liquid state in the South pole or outer space. Thus, ILs are expected as novel lubricants which can provide long life time and high efficiency for mechanical systems under extreme condition. We are now combining ILs and structural polymers to develop low frictional coating materials for mechanical instruments and characterize their lubrication behavior

Smooth film + ILs +polymer brushes Coefficient of friction≦10⁻³ under 430 MPa (Hertzian pressure)

ILs + polymer gels Maintain lubricated surface under 70°C or 2x10⁻⁴Pa

Available Facilities and Equipment					
Laser cutter (Hajime, Oh-laser)					