Glauberman correspondence as a Brauer construction

Fuminori TASAKA

(Received on Jan. 9, 2015)

Abstract

We introduce a particular case of Dade's interpretation of the Glauberman correspondence in terms of the modular representation theory of finite groups, and remark that the Glauberman correspondence can be viwed as a module correspondence given by the Brauer construction of the module.

Keywords: finite group; Glauberman correspondence; Brauer construction; Brauer correspondence; Green correspondence

1

For a prime p, let $(\mathcal{K}, \mathcal{O}, k)$ be a p-modular system where \mathcal{O} is a complete discrete valuation ring having an algebraically closed residue field k of characteristic p and having a quotient field \mathcal{K} of characteristic zero which will be assumed to be large enough for any of finite groups we consider in this article. Let G be a finite group.

For the standard facts on the modular representation theory of finite groups, see [1], [4] and [5].

$\mathbf{2}$

In this section, we give a result on the Brauer construction of the module.

Proposition 2.1. Let P be a Sylow p-subgroup of G, and assume that P has an order p. Let V be a simple kG-module with a vertex P. Then V(P), the Brauer construction of V viewed as a $kN_G(P)$ -module, is simple and is isomorphic to the socle of the Green correspondence of V.

Proof

By the Green coreespondence in a T.I. situation, we have $V \downarrow_{N_G(P)}^G \simeq W \oplus Y$ where W is an indecomposable module with a vertex P and Y is a projective module, see [1, Theorem 1 of Chapter10].

Note that Y(P) = 0, see [5, Proposition 27.9].

We have $\operatorname{Tr}_1^{P'}(W) = 0$. In fact, since the indecomposable projective $kN_G(P)$ modules are uniserial, see [1, the last part of Chapter 5, or Theorem 1 of Chapter 19], we have $W \subseteq \operatorname{rad} R$ for an indecomposable projective $kN_G(P)$ -module R. Since $\operatorname{rad} R = (1-u)R$ for a generator u of P, see [1, Lemma 8 of Chapter 5], we have $(1+u+\cdots+u^{p-1})\operatorname{rad} R = 0$. Hence we have $(1+u+\cdots+u^{p-1})W = 0$ and the assertion follows.

Hence we have

$$V(P) \simeq (V \downarrow_{N_G(P)}^G)(P)$$

$$\simeq (W \oplus Y)(P)$$

$$\simeq W(P) \oplus Y(P)$$

$$\simeq W(P)$$

$$\simeq W^P/\operatorname{Tr}_1^P(W)$$

$$\simeq W^P.$$

We have

$$W^P = \operatorname{soc}(W \downarrow_P^{N_G(P)}),$$

since for an indecomposable kP-module X we have $X^P = \operatorname{soc} X$. In fact, we have $\operatorname{soc} X \subseteq X^P$ and $1 = \dim_k \operatorname{soc} X \leq \dim_k X^P \leq \dim_k (kP)^P = 1$. Note that if $W \downarrow_P = \bigoplus_i X_i$, then $W^P = (\bigoplus_i X_i)^P = \bigoplus_i X_i^P$ and $\operatorname{soc}(W \downarrow_P) = \operatorname{soc}(\bigoplus_i X_i) = \bigoplus_i \operatorname{soc}(X_i)$.

Moreover, using [1, Lemma 8 of Chapter 5] recursively, we have

$$\operatorname{soc}(W\downarrow_P^{N_G(P)}) = \operatorname{soc}(W).$$

Hence, we have the proposition. \Box

3

In this section, we introduce a particular case of Dade's interpretation of the Glauberman correspondence (see [3]) in terms of the modular representation theory of finite groups (see Section 13 of [2] for a more general statement). Then we remark that the Glauberman correspondence can be viwed as a module correspondence given by the Brauer construction of the module.

We cite a very particular case of Dade's Theorem on the endo-permutation modules, which is essential in the proof of Proposition 3.3:

Proposition 3.1. (Dade [2] or see [5, Theorem 30.5, Proposition 28.2, Corollary 28.11])

- (i) The sources of simple modules of p-nilpotent groups are endo-permutation modules.
- (ii) Endo-permutation kP-modules for a group P of order p are k and $\Omega_k(k)$.

Below, we assume that G has an order not divisible by p. Let P be a group of order p acting on G, and E be a semidirect product of G and P with this action. Let $C = C_G(P)$. We have $N_E(P) = C_E(P) = CP$.

The following is standard, and below we consider the correspondence suggested in the proof of Lemma 3.2:

Lemma 3.2. There is a one-to-one correspondence between the following sets:

- (i) $Irr(G)^P$: the set of P-invariant irreducible characters of G
- (ii) $\operatorname{Simp}(G)^P$: the set of P-invariant simple kG-modules
- (iii) $Bl(G)^P$: the set of P-invariant p-blocks of G
- (iv) Bl(E|P): the set of p-blocks of E with a defect group P
- (v) $\operatorname{Simp}(E|P)$: the set of simple kE-modules with a vertex P
- (vi) Bl(CP|P): the set of p-blocks of CP with a defect group P
- (vii) $\operatorname{Simp}(CP|P)$: the set of simple kCP-modules with a vertex P
- (viii) $Bl(C)^P$: the set of P-invariant p-blocks of C
- (ix) Bl(C): the set of p-blocks of C
- (x) $\operatorname{Simp}(C)$: the set of simple kC-modules
- (xi) Irr(C): the set of irreducible characters of C

Proof

(i) (ii) (iii) (similar for (ix) (x) (xi)): Note that G is a p'-group. See [4, Theorem 6.37 of Chapter III].

(iii) (iv) (similar for (vi) (viii)): A block of G is covered by a unique block of E, see [4, Corollary 5.6 of Chapter 5]. Hence, when a block b of G is P-invariant, b is also a block of E, and when a block b of G is not P-invariant, $\operatorname{Tr}_1^P(b)$ is a block of E. All the blocks of E appear in this way, since a block of E covers some block of G, see [4, Lemma 5.3 of Chapter 5]. In the former case, b has a defect group P, since the irreducible character of G in b is P-invariant and so has p distinct extensions to the irreducible character of E in b. In the latter case, $\operatorname{Tr}_1^P(b)$ has a defect 0, see [4, Theorem 5.10 of Chapter 5].

(iv) (v) (similar for (vi) (vii)): Since $kEb \simeq kGb \otimes_k kP$, see [4, Theorem 7.4 of Chapter 5] or [5, Corollary 50.9], kEb has a unique simple module, which is not projective.

(iv) (vi): Since $N_E(P) = CP$, we can consider the Brauer correspondence, see [4, Theorem 2.15 of Chapter 5] (Brauer's first main theorem).

(viii) (ix): The action of P on Bl(C) is trivial. \Box

Note that the above correspondences in (v) (ii) and in (vii) (x) are given by the restriction.

Proposition 3.3. (Dade) The correspondence in Lemma 3.2 (i) (xi) is the Glauberman correspondence.

Proof

Let $\chi \in \operatorname{Irr}(G)^P$. Let *b* be the corresponding block (Lemma 3.2(i) (iv)), and let \hat{V} be the unique simple kEb-module, which has a vertex *P* (Lemma 3.2 (iv) (v)). Let *T* be a source kP-module of \hat{U} , see Proposition 3.1. Let $c = \operatorname{Br}_P(b)$ (Lemma 3.2 (iv) (vi)), and let \hat{U} be the unique simple kCPc-module, which has a vertex *P* (Lemma 3.2 (vi) (vii)). Note that $U = \hat{U} \downarrow_C^{CP}$ is the unique simple kCc-module (Lemma 3.2 (vii) (x)).

Denoting \hat{W} the Green correspondence of \hat{V} , we have

 $\hat{V}\downarrow_{CP}^{E} \simeq \hat{W} \oplus \text{(projective modules)}.$

Note that \hat{W} is in c by the "module version" of the Brauer's second main theorem, see [1, Theorem 3 of Chapter 14], and is a uniserial module whose composition factors are all isomorphic to \hat{U} .

If $T \simeq k$, then $\hat{W} \simeq \hat{U}$, and if $T \simeq \Omega_k(k)$, then \hat{W} is an indecomposable kCPc-module of length p-1.

Note that any indecomposable projective kCP-module is a uniserial module of length p whose composition factors are isomorphic, and that kC is semisimple.

Hence, when $T \simeq k$, we have

$$V \downarrow^G_C \simeq (\hat{V} \downarrow^E_G) \downarrow^G_C \simeq (\hat{V} \downarrow^E_{CP}) \downarrow^C_C \simeq U \oplus p(\cdots),$$

and when $T \simeq \Omega_k(k)$, we have

$$V\downarrow^G_C \simeq (\hat{V}\downarrow^E_G)\downarrow^G_C \simeq (\hat{V}\downarrow^E_{CP})\downarrow^{CP}_C \simeq (p-1)U \oplus p(\cdots).$$

Hence, we have the proposition. \Box

Under the above notations, $\hat{V}(P) \simeq \hat{U}$ as modules over $N_E(P) = CP$ by Proposition 2.1, and $\hat{V}(P) \simeq \hat{U} \downarrow_C \simeq U$ as modules over $N_E(P)/P \simeq C$. That is:

Proposition 3.4. We have $\hat{V}(P) \simeq U$, and the correspondence in Lemma 3.2(v) (x) is given by the Brauer construction of the modules with respect to P.

Hence for a *P*-invariant simple $\mathcal{K}G$ -module we can get the Glauberman corresponding $\mathcal{K}C$ -module by the following procedure:

(i) considering $\mathcal{O}G\text{-}\mathrm{lattice}$ and reduction modulo p

(ii) extension to kE-module

(iii) Brauer construction of the module with respect to P

(iv) \mathcal{O} -lift and \mathcal{K} -extension

References

- [1] J. L. Alperin, Local representation theory, Cambridge University Press, 1986.
- [2] E. C. Dade, Endo-permutation modules over p-groups, II, Ann. of Math. 108 (1978), 317–346.
- [3] G. Glauberman, Correspondence of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465–1488.
- [4] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Boston, 1989.
- [5] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford Univ. Press, New York, 1995.