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     Abstract 

       This paper presents a study of adaptive force control that takes into account object 

characteristics using a fuzzy neural network. This study applies fuzzy theory to position 

control and force control, similar to those actually implemented by industrial robots, to 

enable automatic establishment of optimum parameters for different environments and 

autonomous and flexible motion. 

 

       Keywords: adaptive force control, fuzzy neural network, intelligent impedance control 

1.  INTRODUCTION 

In recent years, the industrial world has been anticipating the arrival of robots capable of coping with 

differences in environment and object characteristics. These robots would be capable of what is called 

humanoid motion. This study of Intelligent Impedance Control using a Fuzzy Neural Network applies 

fuzzy theory to position control and force control, similar to those actually implemented by industrial 

robots, to enable automatic establishment of optimum parameters for different environments and 

autonomous and flexible motion. After the motion of a constructed control model was verified through 

simulation and experiments at the uniaxial stage, it was then installed into an arm robot, the ultimate 

target of this research, for a final confirmation of motion. 

2.  INTELLIGENT IMPEDANCE CONTROL 

 In this research, a neural network[1,3,6,7,8] and fuzzy neural network are used in the system, as shown 

in the block diagram, Fig. 1. 

There are control systems for position and force, each composed of a two-degree-of-freedom[2] 

structure combining feedback and feedforward[5,10,11,12]. In the FF-NN (neural network block), even 

greater linear control is achieved by giving the inverse of Plant characteristics. Also, the FB-FN (fuzzy 

neural network block) is utilized to cancel disturbances caused by unsteadiness and friction arising from 

motion that the FF-NN cannot fully absorb. These are achieved by fine-tuning the fuzzy parameters to 

carry out ill-defined controls and through the learning capabilities of the neural network[4,9]. 
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 Fig.1. Block diagram of control 

 

 The structures are illustrated in Fig.2 and Fig.3. 

This shows the fuzzy neural network is employed the neural network theory. 

 

 

 

 

 

 

 

 

 

 

 Fig.2. Neural network structure 

 

The neural network has a 3-layer structure with an input layer, a hidden layer, and an output layer. It uses 

displacement, velocity, and acceleration for position input, and force, viscosity, and rigidity for force 

input. 
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  Fig.3. Fuzzy neural network structure 

 

 

It is split into an antecedent and consequent, with the antecedent applying membership function to 

determine nonlinear function. The consequent weights the control using fuzzy rules. 

)()()()( dfddhdax FFKSESFxxSKKxxBxM                  (1)  

X: position, Xd: position command, Mx: inertia matrix, Ba: damper matrix, 

Kd: virtual spring matrix, F: force response, Fd: force command, S: switching matrix 

diag(S1,- - -,S6), Kf: force gain, E: unit matrix 

S, M, B, K are 6×6 matrices(X,Y,Z,XM,YM,ZM) 

 Defined as in Equation (2) the impedance as a secondary vibration system are in terms of the 

displacement force. 

     
dax KsBsM 2

1  
                                  (2) 

          ①    ②   ③ 

①Mx: Material rigidity (fixed) 

②Ba: Virtual viscosity Parameters set by NN learning 

③Kd: Virtual rigidity Parameters set by NN learning 

Adjusting parameter Kh allows smooth, continuous switching of complete force control and position 

control through compliance control. 

This method makes continuous setting of 3 modes possible by adjusting just 1 parameter. 
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     (4)  Architecture of the fuzzy-neural network
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Kh=0(α=1) force control 

)()(1)()( dfdax FFKSESFxxBxM             (3)        

Kh=Khmax (α=0) position control 

SFxxSKxxBxM dddax  )(1)()( ・           (4) 

0<Kh< Khmax (1>α>0) compliance control 
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 Not directly set, α coefficient is calculated by substituting the Kh to equation (6) the following. 

 
                 

ch

c

KK

K


                              (6) 

 

   Kc: Constant 0.1 , Kh: Virtual spring constant 

   α: Configuration parameter control mode 

The control model for this research was constructed with 2 kinds of input, position command and force 

command. Each was integrated after fuzzifying. Fig.4 shows the actual model diagram built using 

MATLAB Simulink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig.4 Fuzzy model diagram 
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3  Experiment  

 3.1 System configuration 

 A DC motor-driven, uniaxial table was used for control to conduct a grasping experiment. A metal plate 

was also attached to the moving table for grasping an object, and a strain gauge was attached to the center 

of the metal plate to acquire strain data. The aim was to grasp the object without placing load on either the 

object or instrument. Fig. 5 shows an external view of the control instrument. 

 

Fig. 5 External view of the control instrument 

3.2 MATLAB 

 The system architecture of this study utilized MATLAB, Simulink, and Real-Time Workshop. 

Simulink was used to link to the block to allow the establishment of parameters for the constructed model 

diagram and simulation. This method is advantageous because it facilitates system changes and enables 

visual construction. First, an experiment was conducted with a system built using only PID control. Then, 

the Fuzzy Logic Controller from the Fuzzy Logic Toolbox in the Simulink Library Browser was added to 

the system to build a control model diagram using a fuzzy neural network. 

 The top and bottom have identical configuration, but position control is on top and power control on 

the bottom. Both use a neural network for feedforward and a fuzzy neural network for feedback. The 

output of the strain gauge attached to the metal plate was used to obtain power data for power control. 
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The model diagram built with Simulink was converted to C source with Real-Time Workshop and entered 

into an embedded computer to operate the instrument. 

3.3 System flow 

Numbers ①–⑥ illustrate the system flow. 

 ① C source converted with Real-Time Workshop is entered into an embedded computer. 

 ② The motor is driven according to simulation. 

 ③ Strain gauge voltage is produced at the moment an object is grasped. 

 ④ Voltage amplified by an amp is converted to a digital value by an A/D converter. 

 ⑤ Strain gauge output is received as power data, and power control starts. 

 ⑥ Voltage applied to the motor and strain gauge output are displayed on the computer in real time. 

VC Designer software was used for the computer display (⑥) to create a system showing a real-time 

graph display of voltage applied to the motor and strain gauge output. 

 

3.4 Experiment method 

 As previously noted, this study aimed to construct a system capable of flexibly handling differences in 

object rigidity. That is, even when the characteristics of a component on a manufacturing line suddenly 

change, the conventionally required resetting of parameters is omitted, object-appropriate autonomous 

adjustment of pressure is achieved, and motion can be executed without load. 

 Since a variety of instances had to be anticipated in this grasping experiment, objects with totally 

different properties and rigidity were used. Observations and indications for improvement were derived 

from outcome disparities between a conventional PID control system and an adaptive force control 

system using a fuzzy neural network. Fig. 6 shows the objects used in the experiment. 
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     Styrofoam         Building block          Sponge 

 

 

 

 

 

      

Coil            Chalk              Stuffed animal 

 

 

 

 

 

 

Fig. 6 Objects used in the experiment 

(1) Experiment using PID control 

 First, a grasping experiment was conducted with a model diagram using PID control. This system also 

had a built-in neural network for feedforward because, ultimately, this study attempted to prove the 

outcomes of a fuzzy neural network. Also, PID block parameters for control were set at parameters more 

appropriate than experimental values to observe output waveform and show even greater efficient 

convergence. The established parameters were P=1, I=0, D=0.1. 

(2) Experiment using a fuzzy neural network 

 The model diagram for the PID block constructed in the previous step was changed to a fuzzy neural 

network, at which time displacement and velocity were input, so the input signal and first-order 

differentiation signal were bundled and linked to the block. The fuzzy block treated this displacement, 

velocity, and output during PID control as an instruction signal, and learned from these 3 pieces of data. 

In addition, though not stated in item (1), a neural network was needed. This bundled 4 pieces of 

data—displacement, velocity, acceleration, and, like the fussy neural network, PID control output—into a 
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single-file instruction signal as an array, from which it learned. 

(3) Learning 

     (a) Neural network learning 

  Data on displacement, velocity, acceleration, and instruction signal were collected and input into the 

“NN TRAIN1.m” file, and learning was completed through execution. At this time, the various signals 

required for learning used a block data storage function called scope that was utilized when waveform 

was observed during simulation. Since the saved data became quite large, it was culled to adjust data 

quantity. Data was stored in the MATLAB workspace. 

 The data stored in the workspace was input into “NN TRAIN1.m.” The 3 pieces of data, displacement, 

velocity, and acceleration, were assigned to the P array in the M file, and the instruction signal was 

assigned to the T array. Fig. 7 shows an actual screenshot. 

 

 

 

 

Fig. 7 Screenshot of “NN TRAIN.m” 

 

         (b) Fuzzy neural network learning 

  Like the neural network, the 3 pieces of data—displacement, velocity, and instruction signal—were 

saved as a single data array. The FIS Editor screen for the fuzzy block that was to be learned was 

opened, input was doubled, and the Gaussian function was applied to the function. In this way, 

input/output were set and rules were established in the FIS Editor. Next, Anfis was selected from the 

edit tab. Fuzzy block learning took place in Anfis. Learning was executed by loading the created file. 

Learning frequency was set with the number of Epochs in Train FIS. 

4. Experiment results 

 4.1 Results from the experiment using PID control 
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  A grasping experiment was conducted using the previously noted 6 objects. Here, Fig. 8 shows 

representative results from the building block, Styrofoam, and stuffed animal. Even using PID control, 

it proved possible to grasp the objects without overloading them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Experiment results for the building block, Styrofoam, and stuffed animal 
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 Each of the upper graphs show voltage applied to the motor, or changes to the trajectory of the voltage 

applied to the motor, while the lower graphs show strain gauge output when the objects were grasped. 

 The take away from the 3 experiment results is the fact that output from the strain gauge abruptly rose 

from the moment an object was grasped. This shows that load was placed on the objects, and that it took 

time for the appropriate pressure to be applied. Therefore, the motor also tried to compensate for the 

too-tight grasp by easing it through counter-rotation, but in the end, it required time to converge power 

control. Ideally, the system would instantaneously apply appropriate pressure to grasp an object so that 

convergence efficiently occurs. This was the goal of the experiment conducted next that used adaptive 

force control through a fuzzy neural network. Table 1 shows a comparison of experiment results for the 6 

objects. 

Table1Experimentresults

 

 

 The convergence time shown as “0” in the table indicates the time it took for voltage applied to the 

motor to reach “0,” which can also be expressed as the time it took to switch to power control. The table 

shows that, when grasping soft objects like the stuffed animal, necessary pressure is not applied and 

Convergence 
time to 0 

Time to strain 
stability 

Max. 
strain voltage 

Sponge 

Stuffed animal 

36sec. 

approx. 2.6V 11sec. 36sec. 

approx. 2.3V 12sec. 

over 60sec. 15sec. 

approx. 2.7V 9sec. 38sec. 

24sec. 13sec. approx. 2.1V 

45sec. 25sec. approx. 1.5V 

approx. 0.9V 

Building block 

Styrofoam 

Coil 

Chalk 

Table 1 Experiment results 
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convergence can never be accomplished, as is also apparent from the experiment results graph. 

Convergence also took time for other soft objects like the sponge. Time to strain stability indicates the 

time it takes for the instrument to stabilize and necessary pressure to be applied. As expected, highly rigid 

objects took a certain amount of time due to abrupt output. It also took time for mildly rigid objects 

because, although strain gauge output was gained as the metal plate bent when the object was grasped, 

there was no abrupt output with the mildly rigid object, so acquiring enough output unavoidably took 

time. The maximum strain gauge output from when the object was grasped was also compiled. On 

average, 1.2V of output was sufficient to steadily grasp an object. However, as anticipated, highly rigid 

objects had over twice the output. Eliminating this abrupt output is the biggest issue. 

 4.2 Results from the experiment using intelligent impedance 

  In this study, the output from the building block PID was learned as an instruction signal. A 

comparison was made with the previous experiment between the building block and Styrofoam, which 

has relatively similar rigidity. Fig 9 shows the two experiment results. 
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Fig. 9 Experiment results after learning 

 

 

 Compared to the previous experiment outcomes, the abrupt output of the strain gauge seen during PID 

control and the accompanying applied voltage overshoot were successfully eliminated, enabling the 

efficient application of optimum pressure needed to grasp the objects. A system was successfully 

constructed that did not place load on either the object or instrument. A comparison of experiment results 

was conducted using time to convergence. 

  Building Block: 

    Convergence time to “0”: 36sec. (before learning) → 12sec. (after learning) 

Time to strain gauge output stability: 11sec. (before learning) → 3sec. (after learning) 

 These results show that each convergence time improved by approximately a third. 

5. Discussion 

 A comparison of the two experiments reveals that learning through a fuzzy neural network is extremely 

effective for intelligent impedance control. It can curb abrupt output from the strain gauge and allows 

operation that does not place load on either object or instrument. In addition, since the PID parameters 
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used in the instruction signal were provided by the author based on appropriate experiment values and it 

is possible that a slight deviation from the ideal trajectory occurred, establishing even more appropriate 

PID parameters for the instruction signal will enable the construction of a system that operates even more 

efficiently. 

 This study conducted learning by using a building block, but utilizing the system to conduct a grasping 

experiment with a stuffed animal revealed that a wide range of object rigidity is covered since identical 

improvements were seen with other objects. However, because the strain gauge currently utilized for 

power input performs more poorly than electrostatic power sensors of the kind that are actually installed 

on an arm, the grasping experiment could not be conducted at high velocity. Thus, there is a need to 

conduct an experiment with the table moving at high speed and confirm the difference in accompanying 

outcomes. 

6. Conclusion 

   The implementation experiment confirmed that efficient impedance control is possible through 

learning that uses a fuzzy neural network. In addition, because objects such as chalk that are easily broken 

could also be grasped when diagonal force was applied without placing load on the object, a system was 

successfully built that made possible the original goal of “human-like action” that uses appropriate force. 

Therefore, this study reaffirmed that efficiently applying the necessary pressure to objects with any kind 

of rigidity requires the construction of a system that automatically adjusts gain using a learning function. 

These results illustrate the necessity of a flexible system that uses appropriate force not only in the 

industrial world where robotic arms and various precision equipment are utilized, but also in medical 

fields related to nursing where care robots provide personal care for the elderly by grasping a variety of 

objects and making direct bodily contact. This kind of robust, intelligent impedance control system is now 

being eagerly awaited, and it is thought that its use will spread to many other fields aside from those 

noted above. 
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